Some steps towards a general principle for dimensionality reduction mappings

نویسندگان

  • Barbara Hammer
  • Kerstin Bunte
  • Michael Biehl
چکیده

In the past years, many dimensionality reduction methods have been established which allow to visualize high dimensional data sets. Recently, also formal evaluation schemes have been proposed for data visualization, which allow a quantitative evaluation along general principles. Most techniques provide a mapping of a priorly given finite set of points only, requiring additional steps for out-of-sample extensions. We propose a general view on dimensionality reduction based on the concept of cost functions, and, based on this general principle, extend dimensionality reduction to explicit mappings of the data manifold. This offers the possibility of simple out-of-sample extensions. Further, it opens a way towards a theory of data visualization taking the perspective of its generalization ability to new data points. We demonstrate the approach based in a simple example.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised dimension reduction mappings

Abstract. We propose a general principle to extend dimension reduction tools to explicit dimension reduction mappings and we show that this can serve as an interface to incorporate prior knowledge in the form of class labels. We explicitly demonstrate this technique by combining locally linear mappings which result from matrix learning vector quantization schemes with the t-distributed stochast...

متن کامل

A General Framework for Dimensionality-Reducing Data Visualization Mapping

In recent years a wealth of dimension reduction techniques for data visualization and preprocessing has been established. Non-parametric methods require additional effort for out-of-sample extensions, because they just provide a mapping of a given finite set of points. In this contribution we propose a general view on non-parametric dimension reduction based on the concept of cost functions and...

متن کامل

2D Dimensionality Reduction Methods without Loss

In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...

متن کامل

A Monte Carlo-Based Search Strategy for Dimensionality Reduction in Performance Tuning Parameters

Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of ...

متن کامل

انجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی

Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010